Wednesday, December 26, 2012

Opposing Regulation of PROX1 by Interleukin-3 Receptor and NOTCH Directs Differential Host Cell Fate Reprogramming by Kaposi Sarcoma Herpes Virus

Opposing Regulation of PROX1 by Interleukin-3 Receptor and NOTCH Directs Differential Host Cell Fate Reprogramming by Kaposi Sarcoma Herpes Virus

June 2012


Lymphatic endothelial cells (LECs) are differentiated from blood vascular endothelial cells (BECs) during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV) infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming), but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming). Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα) and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV.

Author Summary

Kaposi's sarcoma (KS) is one of the most common neoplasms in HIV-positive individuals and organ transplant recipients. KS-associated herpes virus (KSHV), also known as human herpes virus (HHV)-8, has been identified as the causative agent and infects endothelial cells to form KS. Importantly, we and others have discovered that when KSHV infects endothelial cells of blood vessels, it reprograms host cells to resemble endothelial cells in lymphatic vessels. On the other hand, when KSHV infects endothelial cells in lymphatic vessels, the virus directs the host cells to partially obtain the phenotypes of blood vessel endothelial cells. These host cell reprogramming represent abnormal pathological processes, which are not as complete as the physiological process occurring during embryonic development. Currently, it is not clear how and why this cancer causing virus modifies the fate of its host cells. In this study, we aimed to dissect the molecular mechanism underlying the virus-induced host cell fate reprogramming and found two important cellular signaling pathways, interleukin-3 and Notch, playing key roles in the pathological events. Our current study provides a better understanding of KS tumorigenesis with a potential implication in a new KS therapy.
Full Text Article

No comments: